Unbiased Matrix Rounding

نویسندگان

  • Benjamin Doerr
  • Tobias Friedrich
  • Christian Klein
  • Ralf Osbild
چکیده

We show several ways to round a real matrix to an integer one such that the rounding errors in all rows and columns as well as the whole matrix are less than one. This is a classical problem with applications in many fields, in particular, statistics. We improve earlier solutions of different authors in two ways. For rounding matrices of size m × n, we reduce the runtime from O((mn)) to O(mn log(mn)). Second, our roundings also have a rounding error of less than one in all initial intervals of rows and columns. Consequently, arbitrary intervals have an error of at most two. This is particularly useful in the statistics application of controlled rounding. The same result can be obtained via (dependent) randomized rounding. This has the additional advantage that the rounding is unbiased, that is, for all entries yij of our rounding, we have E(yij) = xij , where xij is the corresponding entry of the input matrix.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unbiased Rounding of Rational Matrices

Rounding a real-valued matrix to an integer one such that the rounding errors in all rows and columns are less than one is a classical problem. It has been applied to hypergraph coloring, in scheduling and in statistics. Here, it often is also desirable to round each entry randomly such that the probability of rounding it up equals its fractional part. This is known as unbiased rounding in stat...

متن کامل

Randomized Rounding without Solving the Linear Program 33

We introduce a new technique called oblivious rounding | a variant of randomized rounding that avoids the bottleneck of rst solving the linear program. Avoiding this bottleneck yields more eecient algorithms and brings probabilistic methods to bear on a new class of problems. We give oblivious rounding algorithms that approximately solve general packing and covering problems, including a parall...

متن کامل

Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model

In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...

متن کامل

The Structure of Bhattacharyya Matrix in Natural Exponential Family and Its Role in Approximating the Variance of a Statistics

In most situations the best estimator of a function of the parameter exists, but sometimes it has a complex form and we cannot compute its variance explicitly. Therefore, a lower bound for the variance of an estimator is one of the fundamentals in the estimation theory, because it gives us an idea about the accuracy of an estimator. It is well-known in statistical inference that the Cram&eac...

متن کامل

A Model-Based Approach to Rounding in Spectral Clustering

In spectral clustering, one defines a similarity matrix for a collection of data points, transforms the matrix to get the Laplacian matrix, finds the eigenvectors of the Laplacian matrix, and obtains a partition of the data using the leading eigenvectors. The last step is sometimes referred to as rounding, where one needs to decide how many leading eigenvectors to use, to determine the number o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2006